Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
telemac-mascaret
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
External wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
opentelemac
telemac-mascaret
Commits
0c79aa61
Commit
0c79aa61
authored
1 week ago
by
Thierry Fouquet
Browse files
Options
Downloads
Patches
Plain Diff
Translate some comments in Tomawac in english
parent
a3840ea2
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
sources/tomawac/fric3d.f
+41
-41
41 additions, 41 deletions
sources/tomawac/fric3d.f
sources/tomawac/wipj.f
+2
-2
2 additions, 2 deletions
sources/tomawac/wipj.f
with
43 additions
and
43 deletions
sources/tomawac/fric3d.f
+
41
−
41
View file @
0c79aa61
...
@@ -52,9 +52,9 @@
...
@@ -52,9 +52,9 @@
G
=
SQRT
(
GRAVIT
)
G
=
SQRT
(
GRAVIT
)
LUMES
=
0
LUMES
=
0
!.....
PARAMETRES DE L'ALGORITHME ITERATIF
!.....
ITERATIVE ALGORITHM PARAMETERS
! """""""""""""""""""""""""""""""""""
! """""""""""""""""""""""""""""""""""
!!!!!!!!!!!!!!!!!!!!!!!!!!
comeca da subrotina chris2
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
VITNUL
=
1.D-6
VITNUL
=
1.D-6
ITERM
=
100
ITERM
=
100
TOLF
=
1.D-8
TOLF
=
1.D-8
...
@@ -65,7 +65,7 @@
...
@@ -65,7 +65,7 @@
RAC2
=
DSQRT
(
2.D0
)
RAC2
=
DSQRT
(
2.D0
)
C1
=
1.D0
/(
XKAPPA
*
RAC2
)
C1
=
1.D0
/(
XKAPPA
*
RAC2
)
!""""""""""""""""""""""""""""""""""""""""""""
!""""""""""""""""""""""""""""""""""""""""""""
! 0 C A
FFECTATION
DE
S
CONSTANT
ES DU MODELE
.
! 0 C A
SSIGNMENT OF MO
DE
L
CONSTANT
S
.
!=====C======================================
!=====C======================================
R
=
0.45D0
R
=
0.45D0
...
@@ -79,9 +79,9 @@
...
@@ -79,9 +79,9 @@
ENDIF
ENDIF
XKN
=
11.D0
*
MAX
(
DEPTH
(
I
),
1.D-9
)
/
EXP
(
0.41D0
*
73.D0
/
G
)
XKN
=
11.D0
*
MAX
(
DEPTH
(
I
),
1.D-9
)
/
EXP
(
0.41D0
*
73.D0
/
G
)
DO
JF
=
1
,
NF
DO
JF
=
1
,
NF
!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!ATENÇAO!TOU EU A DAR
XKN
!!!!!!!!!!!!!!!!!!!!!!!!!!!!
ATTENTION! I'M GIVING
XKN
OMEGAA
=
DEUPI
*
FREQ
(
JF
)
OMEGAA
=
DEUPI
*
FREQ
(
JF
)
!.....DETERMINATION
DES
SOLUTIONS
INITIALES (SANS EFFET MUTUEL
)
!.....DETERMINATION
OF INITIAL
SOLUTIONS
(WITHOUT MUTUAL EFFECT
)
! """""""""""""""""""""""""""""""""""""""""""""""""""""""""
! """""""""""""""""""""""""""""""""""""""""""""""""""""""""
XJ
=
(
DSQRT
(
BETAMJ
)
*
UWBM
(
I
)/(
XKN
*
OMEGAA
))
**
(
2.D0
/
3.D0
)
XJ
=
(
DSQRT
(
BETAMJ
)
*
UWBM
(
I
)/(
XKN
*
OMEGAA
))
**
(
2.D0
/
3.D0
)
COEF1
=
30.D0
/
DEXP
(
1.D0
)
COEF1
=
30.D0
/
DEXP
(
1.D0
)
...
@@ -91,7 +91,7 @@
...
@@ -91,7 +91,7 @@
ELSEIF
(
XJ
.LT.
3.47D0
)
THEN
ELSEIF
(
XJ
.LT.
3.47D0
)
THEN
FWINIT
=
2.D0
*
BETAMJ
/
XJ
FWINIT
=
2.D0
*
BETAMJ
/
XJ
ELSE
ELSE
! F
UNCAO FWMOD2
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
11
! F
WMOD2 FUNCTION
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
USKA
=
UWBM
(
I
)/(
XKN
*
OMEGAA
)
USKA
=
UWBM
(
I
)/(
XKN
*
OMEGAA
)
!
!
C2
=
C1
*
DLOG
(
30.D0
*
XKAPPA
*
DEXP
(
-2.D0
*
ZETA
)
*
USKA
/
RAC2
)
C2
=
C1
*
DLOG
(
30.D0
*
XKAPPA
*
DEXP
(
-2.D0
*
ZETA
)
*
USKA
/
RAC2
)
...
@@ -107,15 +107,16 @@
...
@@ -107,15 +107,16 @@
STOP
STOP
205
CONTINUE
205
CONTINUE
FWINIT
=
1.D0
/(
YN
*
YN
)
FWINIT
=
1.D0
/(
YN
*
YN
)
!
FUNCAO
final FWMOD2!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!final FWMOD2
FUNCTION
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
ENDIF
ENDIF
!
!
!.....A
FFECTATION DE LA SOLUTION DE DEPART
!.....A
SSIGNMENT OF INITIAL SOLUTION
! """"""""""""""""""""""""""""""""""""
! """"""""""""""""""""""""""""""""""""
FC
=
FCINIT
FC
=
FCINIT
FW
=
FWINIT
FW
=
FWINIT
!.....ON S'ARRETE A CES SOLUTIONS SI UNE DES DEUX VITESSES EST
!.....STOP AT THESE SOLUTIONS IF ONE OF THE TWO VELOCITIES IS ZERO, OR IF THE
! NULLE OU SI LE RAPPORT DES VITESSES EST TRES GRAND OU PETIT.
! VELOCITY RATIO IS VERY LARGE OR SMALL.
!
! """"""""""""""""""""""""""""""""""""""""""""""""""""""""""""
! """"""""""""""""""""""""""""""""""""""""""""""""""""""""""""
IF
((
VITCOU
.LT.
VITNUL
)
.OR.
(
UWBM
(
I
)
.LT.
VITNUL
))
THEN
IF
((
VITCOU
.LT.
VITNUL
)
.OR.
(
UWBM
(
I
)
.LT.
VITNUL
))
THEN
CFWC
%
R
(
I
)
=
FC
CFWC
%
R
(
I
)
=
FC
...
@@ -124,46 +125,45 @@
...
@@ -124,46 +125,45 @@
CFWC
%
R
(
I
)
=
FC
CFWC
%
R
(
I
)
=
FC
ELSE
ELSE
!
!
!.....
ALGORITHME ITERATIF DE NEWTON-RAPHSON
.
!.....
NEWTON-RAPHSON ITERATIVE ALGORITHM
.
! """"""""""""""""""""""""""""""""""""""
! """"""""""""""""""""""""""""""""""""""
ITER
=
0
ITER
=
0
500
CONTINUE
500
CONTINUE
ITER
=
ITER
+1
ITER
=
ITER
+1
!!!!!!!!!!!!!!!!!!!!!!!!!!final da subrotina chris2!!!!!!!!!!!!!!!
!
!.......CALCUL DES MATRICES ALFA ET BETA POUR X DONNE.
!...... CALCULATION OF ALFA AND BETA MATRICES FOR GIVEN X.
!CJSUBR!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!
!
!=====C
!=====C
! 1 C CALCUL
DE SIGMA ET DE SE
S DERIV
E
ES (COMM
U
N
AUX 2
MODEL
E
S)
! 1 C CALCUL
ATION OF SIGMA AND IT
S DERIV
ATIV
ES (COMM
O
N
TO BOTH
MODELS)
!=====C===========================================================
!=====C===========================================================
======
SIG
=
(
FC
/
FW
)
*
(
VITCOU
/
UWBM
(
I
))
**
2
SIG
=
(
FC
/
FW
)
*
(
VITCOU
/
UWBM
(
I
))
**
2
SIGDFC
=
SIG
/
FC
SIGDFC
=
SIG
/
FC
SIGDFW
=
-
SIG
/
FW
SIGDFW
=
-
SIG
/
FW
!=====C
!=====C
! 2 C CALCUL
DE M ET DE SE
S DERIV
E
ES (COMM
U
N
AUX 2
MODEL
E
S)
! 2 C CALCUL
ATION OF M AND IT
S DERIV
ATIV
ES (COMM
O
N
TO BOTH
MODELS)
!=====C===========================================================
!=====C===========================================================
==
COSDIR
=
DABS
(
COS
(
DIRHOU
(
I
)
-
DIRCOU
))
COSDIR
=
DABS
(
COS
(
DIRHOU
(
I
)
-
DIRCOU
))
MMM
=
DSQRT
(
1.D0
+
SIG
*
SIG
+2.D0
*
SIG
*
COSDIR
)
MMM
=
DSQRT
(
1.D0
+
SIG
*
SIG
+2.D0
*
SIG
*
COSDIR
)
MMMDFC
=
(
SIG
+
COSDIR
)/
MMM
*
SIGDFC
MMMDFC
=
(
SIG
+
COSDIR
)/
MMM
*
SIGDFC
MMMDFW
=
(
SIG
+
COSDIR
)/
MMM
*
SIGDFW
MMMDFW
=
(
SIG
+
COSDIR
)/
MMM
*
SIGDFW
!=====C
!=====C
! 3 C CALCUL
DE J ET DE SE
S DERIV
E
ES (COMM
U
N
AUX 2
MODEL
E
S)
! 3 C CALCUL
ATION OF J AND IT
S DERIV
ATIV
ES (COMM
O
N
TO BOTH
MODELS)
!=====C===========================================================
!=====C===========================================================
==
COEFJ
=
UWBM
(
I
)/(
XKN
*
OMEGAA
*
DSQRT
(
2.D0
))
COEFJ
=
UWBM
(
I
)/(
XKN
*
OMEGAA
*
DSQRT
(
2.D0
))
JJJ
=
COEFJ
*
DSQRT
(
MMM
*
FW
)
JJJ
=
COEFJ
*
DSQRT
(
MMM
*
FW
)
JJJDFC
=
0.5D0
*
JJJ
/
MMM
*
MMMDFC
JJJDFC
=
0.5D0
*
JJJ
/
MMM
*
MMMDFC
JJJDFW
=
0.5D0
*
JJJ
*
(
1.D0
/
FW
+1.D0
/
MMM
*
MMMDFW
)
JJJDFW
=
0.5D0
*
JJJ
*
(
1.D0
/
FW
+1.D0
/
MMM
*
MMMDFW
)
!=====C
!=====C
! 4 C SELECTION
DU MODELE EN FONCTION DE LA VALEUR DE
J
! 4 C
MODEL
SELECTION
BASED ON THE VALUE OF
J
!=====C========================================
==========
!=====C========================================
IF
(
JJJ
.GT.
3.47D0
)
THEN
IF
(
JJJ
.GT.
3.47D0
)
THEN
MODEL
=
2
MODEL
=
2
ELSE
ELSE
MODEL
=
1
MODEL
=
1
ENDIF
ENDIF
!=====C
!=====C
! 5 C CALCUL
DE DELTAW ET DE SES DERIVEES (SEL
ON
L
E MODEL
E
CHO
ISI
)
! 5 C CALCUL
ATION OF DELTAW AND ITS DERIVATIVES (DEPENDING
ON
TH
E MODEL CHO
SEN
)
!=====C=============================================================
!=====C=============================================================
=============
IF
(
MODEL
.EQ.
1
)
THEN
IF
(
MODEL
.EQ.
1
)
THEN
COEFTA
=
XKN
*
R
*
DEUPI
/
2.D0
*
DSQRT
(
BETAMJ
*
0.5D0
)
COEFTA
=
XKN
*
R
*
DEUPI
/
2.D0
*
DSQRT
(
BETAMJ
*
0.5D0
)
TAW
=
COEFTA
*
DSQRT
(
JJJ
)
TAW
=
COEFTA
*
DSQRT
(
JJJ
)
...
@@ -176,8 +176,8 @@
...
@@ -176,8 +176,8 @@
TAWDFW
=
COEFTA
*
JJJDFW
TAWDFW
=
COEFTA
*
JJJDFW
ENDIF
ENDIF
!=====C
!=====C
! 6 C CALCUL
DE KA ET DE SES DERIVEES (SEL
ON
L
E MODEL
E
CHO
ISI
)
! 6 C CALCUL
ATION OF KA AND ITS DERIVATIVES (DEPENDING
ON
TH
E MODEL CHO
SEN
)
!=====C=============================================================
!=====C=============================================================
=========
IF
(
MODEL
.EQ.
1
)
THEN
IF
(
MODEL
.EQ.
1
)
THEN
COEFKA
=
XKAPPA
/(
BETAMJ
*
XKN
)
COEFKA
=
XKAPPA
/(
BETAMJ
*
XKN
)
XKA
=
30.D0
*
TAW
*
DEXP
(
-
COEFKA
*
TAW
*
DSQRT
(
SIG
/
MMM
))
XKA
=
30.D0
*
TAW
*
DEXP
(
-
COEFKA
*
TAW
*
DSQRT
(
SIG
/
MMM
))
...
@@ -194,8 +194,8 @@
...
@@ -194,8 +194,8 @@
&
*
DLOG
(
30.D0
*
TAW
/
XKN
)
+
(
1.D0
-
AUXI
)
*
TAWDFW
/
TAW
)
&
*
DLOG
(
30.D0
*
TAW
/
XKN
)
+
(
1.D0
-
AUXI
)
*
TAWDFW
/
TAW
)
ENDIF
ENDIF
!=====C
!=====C
! 7 C CALCUL
DE F1 ET DE SES DERIVEES (SEL
ON
L
E MODEL
E
CHO
ISI
)
! 7 C CALCUL
ATION OF F1 AND ITS DERIVATIVES (DEPENDING
ON
TH
E MODEL CHO
SEN
)
!=====C=============================================================
!=====C=============================================================
=========
IF
(
MODEL
.EQ.
1
)
THEN
IF
(
MODEL
.EQ.
1
)
THEN
F1MJ
=
FW
-2.D0
*
BETAMJ
*
MMM
/
JJJ
F1MJ
=
FW
-2.D0
*
BETAMJ
*
MMM
/
JJJ
DF1DFC
=
-2.D0
*
BETAMJ
*
(
MMMDFC
/
JJJ
-
JJJDFC
*
MMM
/
JJJ
**
2
)
DF1DFC
=
-2.D0
*
BETAMJ
*
(
MMMDFC
/
JJJ
-
JJJDFC
*
MMM
/
JJJ
**
2
)
...
@@ -210,26 +210,26 @@
...
@@ -210,26 +210,26 @@
&
-
2.D0
*
MMM
/
JJJ
*
JJJDFW
/
AUXI
**
3
)
&
-
2.D0
*
MMM
/
JJJ
*
JJJDFW
/
AUXI
**
3
)
ENDIF
ENDIF
!=====C
!=====C
! 8 C CALCUL
DE F2 ET DE SE
S DERIV
E
ES (COMM
U
N
AUX 2
MODEL
E
S)
! 8 C CALCUL
ATION OF F2 AND IT
S DERIV
ATIV
ES (COMM
O
N
TO BOTH
MODELS)
!=====C===========================================================
!=====C===========================================================
===
COEF2
=
30.D0
*
DEPTH
(
I
)/
DEXP
(
1.D0
)
COEF2
=
30.D0
*
DEPTH
(
I
)/
DEXP
(
1.D0
)
AUXI
=
DLOG
(
COEF2
/
XKA
)
AUXI
=
DLOG
(
COEF2
/
XKA
)
F2MJ
=
DSQRT
(
2.D0
/
FC
)
-
AUXI
/
XKAPPA
F2MJ
=
DSQRT
(
2.D0
/
FC
)
-
AUXI
/
XKAPPA
DF2DFC
=
XKADFC
/(
XKA
*
XKAPPA
)
-1.D0
/
DSQRT
(
2.D0
*
FC
**
3
)
DF2DFC
=
XKADFC
/(
XKA
*
XKAPPA
)
-1.D0
/
DSQRT
(
2.D0
*
FC
**
3
)
DF2DFW
=
XKADFW
/(
XKA
*
XKAPPA
)
DF2DFW
=
XKADFW
/(
XKA
*
XKAPPA
)
!CJSUBR!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!
!
!.......CALCUL
DE L'ERREUR SUR LA
F
O
NCTION
!.......CALCUL
ATION OF THE ERROR ON THE
F
U
NCTION
! """"""""""""""""""""""""""""""""""
! """"""""""""""""""""""""""""""""""
""""""
ERRF
=
ABS
(
F1MJ
)
+
ABS
(
F2MJ
)
ERRF
=
ABS
(
F1MJ
)
+
ABS
(
F2MJ
)
IF
(
ERRF
.LT.
TOLF
)
THEN
IF
(
ERRF
.LT.
TOLF
)
THEN
KONVER
=
1
KONVER
=
1
GOTO
201
GOTO
201
ENDIF
ENDIF
!
!
!.......CALCUL
DE
DX
!.......CALCUL
ATION OF
DX
! """"""""""""
! """"""""""""
"""""
DET
=
DF1DFC
*
DF2DFW
-
DF1DFW
*
DF2DFC
DET
=
DF1DFC
*
DF2DFW
-
DF1DFW
*
DF2DFC
IF
(
ABS
(
DET
)
.LT.
1.D-10
)
THEN
IF
(
ABS
(
DET
)
.LT.
1.D-10
)
THEN
WRITE
(
6
,
*
)
'/!/ ARRET DANS CJSUBR : DETERMINAT NUL DET='
WRITE
(
6
,
*
)
'/!/ ARRET DANS CJSUBR : DETERMINAT NUL DET='
...
@@ -238,13 +238,13 @@
...
@@ -238,13 +238,13 @@
DFC
=
(
-
F1MJ
*
DF2DFW
+
F2MJ
*
DF1DFW
)/
DET
DFC
=
(
-
F1MJ
*
DF2DFW
+
F2MJ
*
DF1DFW
)/
DET
DFW
=
(
-
F2MJ
*
DF1DFC
+
F1MJ
*
DF2DFC
)/
DET
DFW
=
(
-
F2MJ
*
DF1DFC
+
F1MJ
*
DF2DFC
)/
DET
!
!
!.......
MISE A JOUR DE LA
SOLUTION
!.......
UPDATING THE
SOLUTION
! """""""""""""""""""""
"""""
! """""""""""""""""""""
FC
=
FC
+
DFC
FC
=
FC
+
DFC
FW
=
FW
+
DFW
FW
=
FW
+
DFW
!
!
!.......TEST
SUR LA VALEUR DE
DX
!.......TEST
ON THE VALUE OF
DX
! """""""""""""""""""""""
"
! """""""""""""""""""""""
ERRX
=
ABS
(
DFC
)
+
ABS
(
DFW
)
ERRX
=
ABS
(
DFC
)
+
ABS
(
DFW
)
IF
(
ERRX
.LT.
TOLX
)
THEN
IF
(
ERRX
.LT.
TOLX
)
THEN
KONVER
=
2
KONVER
=
2
...
@@ -258,8 +258,8 @@
...
@@ -258,8 +258,8 @@
201
CONTINUE
201
CONTINUE
IF
(
LUMES
.GT.
0
)
WRITE
(
LUMES
,
2000
)
KONVER
,
ITER
,
FC
,
FW
IF
(
LUMES
.GT.
0
)
WRITE
(
LUMES
,
2000
)
KONVER
,
ITER
,
FC
,
FW
2000
FORMAT
(
2000
FORMAT
(
&
'CONVERGENCE '
,
I1
,
' A
PRES
'
,
I5
,
' ITERATIONS => FC ='
,
&
'CONVERGENCE '
,
I1
,
' A
FTER
'
,
I5
,
' ITERATIONS => FC ='
,
&
E11.4
,
'
ET
FW ='
,
E11.4
)
&
E11.4
,
'
AND
FW ='
,
E11.4
)
ENDIF
ENDIF
ENDDO
ENDDO
ENDDO
ENDDO
...
...
This diff is collapsed.
Click to expand it.
sources/tomawac/wipj.f
+
2
−
2
View file @
0c79aa61
...
@@ -76,11 +76,11 @@
...
@@ -76,11 +76,11 @@
&
(
ST3
,
'='
,
'GRADF Y'
,
IELM2
,
1.D0
,
MESH
%
Y
,
&
(
ST3
,
'='
,
'GRADF Y'
,
IELM2
,
1.D0
,
MESH
%
Y
,
&
ST1
,
ST1
,
ST1
,
ST1
,
ST1
,
MESH
,
.FALSE.
,
ST1
,
ASSPAR
=
.TRUE.
)
&
ST1
,
ST1
,
ST1
,
ST1
,
ST1
,
MESH
,
.FALSE.
,
ST1
,
ASSPAR
=
.TRUE.
)
!
AQUI FAZEMOS A MÉDIA dos
grads
no
volume.
!
HERE WE AVERAGE the
grads
in the
volume.
CALL
OV
(
'X=Y/Z '
,
WIPDY
,
T1
,
T3
,
C
,
NPOIN2
)
CALL
OV
(
'X=Y/Z '
,
WIPDY
,
T1
,
T3
,
C
,
NPOIN2
)
!
AQUI TEMOS AS DERIVADAS EM X E Y DO
WAVE INDUCED PRESSURE
!
HERE WE HAVE THE X AND Y DERIVATIVES OF THE
WAVE INDUCED PRESSURE
RETURN
RETURN
END
END
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment