Skip to content
Snippets Groups Projects
Commit 0c79aa61 authored by Thierry Fouquet's avatar Thierry Fouquet
Browse files

Translate some comments in Tomawac in english

parent a3840ea2
No related branches found
No related tags found
No related merge requests found
...@@ -52,9 +52,9 @@ ...@@ -52,9 +52,9 @@
G = SQRT (GRAVIT) G = SQRT (GRAVIT)
LUMES = 0 LUMES = 0
!.....PARAMETRES DE L'ALGORITHME ITERATIF !.....ITERATIVE ALGORITHM PARAMETERS
! """"""""""""""""""""""""""""""""""" ! """""""""""""""""""""""""""""""""""
!!!!!!!!!!!!!!!!!!!!!!!!!!comeca da subrotina chris2!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
VITNUL= 1.D-6 VITNUL= 1.D-6
ITERM = 100 ITERM = 100
TOLF = 1.D-8 TOLF = 1.D-8
...@@ -65,7 +65,7 @@ ...@@ -65,7 +65,7 @@
RAC2=DSQRT(2.D0) RAC2=DSQRT(2.D0)
C1 =1.D0/(XKAPPA*RAC2) C1 =1.D0/(XKAPPA*RAC2)
!"""""""""""""""""""""""""""""""""""""""""""" !""""""""""""""""""""""""""""""""""""""""""""
! 0 C AFFECTATION DES CONSTANTES DU MODELE. ! 0 C ASSIGNMENT OF MODEL CONSTANTS.
!=====C====================================== !=====C======================================
R = 0.45D0 R = 0.45D0
...@@ -79,9 +79,9 @@ ...@@ -79,9 +79,9 @@
ENDIF ENDIF
XKN = 11.D0*MAX(DEPTH(I),1.D-9) /EXP(0.41D0*73.D0/G) XKN = 11.D0*MAX(DEPTH(I),1.D-9) /EXP(0.41D0*73.D0/G)
DO JF = 1,NF DO JF = 1,NF
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!ATENÇAO!TOU EU A DAR XKN !!!!!!!!!!!!!!!!!!!!!!!!!!!!ATTENTION! I'M GIVING XKN
OMEGAA=DEUPI*FREQ(JF) OMEGAA=DEUPI*FREQ(JF)
!.....DETERMINATION DES SOLUTIONS INITIALES (SANS EFFET MUTUEL) !.....DETERMINATION OF INITIAL SOLUTIONS (WITHOUT MUTUAL EFFECT)
! """"""""""""""""""""""""""""""""""""""""""""""""""""""""" ! """""""""""""""""""""""""""""""""""""""""""""""""""""""""
XJ=(DSQRT(BETAMJ)*UWBM(I)/(XKN*OMEGAA))**(2.D0/3.D0) XJ=(DSQRT(BETAMJ)*UWBM(I)/(XKN*OMEGAA))**(2.D0/3.D0)
COEF1 = 30.D0/DEXP(1.D0) COEF1 = 30.D0/DEXP(1.D0)
...@@ -91,7 +91,7 @@ ...@@ -91,7 +91,7 @@
ELSEIF (XJ.LT.3.47D0) THEN ELSEIF (XJ.LT.3.47D0) THEN
FWINIT=2.D0*BETAMJ/XJ FWINIT=2.D0*BETAMJ/XJ
ELSE ELSE
! FUNCAO FWMOD2!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!11 ! FWMOD2 FUNCTION!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
USKA=UWBM(I)/(XKN*OMEGAA) USKA=UWBM(I)/(XKN*OMEGAA)
! !
C2=C1*DLOG(30.D0*XKAPPA*DEXP(-2.D0*ZETA)*USKA/RAC2) C2=C1*DLOG(30.D0*XKAPPA*DEXP(-2.D0*ZETA)*USKA/RAC2)
...@@ -107,15 +107,16 @@ ...@@ -107,15 +107,16 @@
STOP STOP
205 CONTINUE 205 CONTINUE
FWINIT=1.D0/(YN*YN) FWINIT=1.D0/(YN*YN)
!FUNCAO final FWMOD2!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !final FWMOD2 FUNCTION!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
ENDIF ENDIF
! !
!.....AFFECTATION DE LA SOLUTION DE DEPART !.....ASSIGNMENT OF INITIAL SOLUTION
! """""""""""""""""""""""""""""""""""" ! """"""""""""""""""""""""""""""""""""
FC=FCINIT FC=FCINIT
FW=FWINIT FW=FWINIT
!.....ON S'ARRETE A CES SOLUTIONS SI UNE DES DEUX VITESSES EST !.....STOP AT THESE SOLUTIONS IF ONE OF THE TWO VELOCITIES IS ZERO, OR IF THE
! NULLE OU SI LE RAPPORT DES VITESSES EST TRES GRAND OU PETIT. ! VELOCITY RATIO IS VERY LARGE OR SMALL.
!
! """""""""""""""""""""""""""""""""""""""""""""""""""""""""""" ! """"""""""""""""""""""""""""""""""""""""""""""""""""""""""""
IF ((VITCOU.LT.VITNUL).OR.(UWBM(I).LT.VITNUL)) THEN IF ((VITCOU.LT.VITNUL).OR.(UWBM(I).LT.VITNUL)) THEN
CFWC%R(I)=FC CFWC%R(I)=FC
...@@ -124,46 +125,45 @@ ...@@ -124,46 +125,45 @@
CFWC%R(I)=FC CFWC%R(I)=FC
ELSE ELSE
! !
!.....ALGORITHME ITERATIF DE NEWTON-RAPHSON. !.....NEWTON-RAPHSON ITERATIVE ALGORITHM.
! """""""""""""""""""""""""""""""""""""" ! """"""""""""""""""""""""""""""""""""""
ITER=0 ITER=0
500 CONTINUE 500 CONTINUE
ITER=ITER+1 ITER=ITER+1
!!!!!!!!!!!!!!!!!!!!!!!!!!final da subrotina chris2!!!!!!!!!!!!!!! !
!.......CALCUL DES MATRICES ALFA ET BETA POUR X DONNE. !...... CALCULATION OF ALFA AND BETA MATRICES FOR GIVEN X.
!CJSUBR!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! !
!=====C !=====C
! 1 C CALCUL DE SIGMA ET DE SES DERIVEES (COMMUN AUX 2 MODELES) ! 1 C CALCULATION OF SIGMA AND ITS DERIVATIVES (COMMON TO BOTH MODELS)
!=====C=========================================================== !=====C=================================================================
SIG = (FC/FW)*(VITCOU/UWBM(I))**2 SIG = (FC/FW)*(VITCOU/UWBM(I))**2
SIGDFC = SIG/FC SIGDFC = SIG/FC
SIGDFW = -SIG/FW SIGDFW = -SIG/FW
!=====C !=====C
! 2 C CALCUL DE M ET DE SES DERIVEES (COMMUN AUX 2 MODELES) ! 2 C CALCULATION OF M AND ITS DERIVATIVES (COMMON TO BOTH MODELS)
!=====C=========================================================== !=====C=============================================================
COSDIR = DABS(COS(DIRHOU(I)-DIRCOU)) COSDIR = DABS(COS(DIRHOU(I)-DIRCOU))
MMM = DSQRT(1.D0+SIG*SIG+2.D0*SIG*COSDIR) MMM = DSQRT(1.D0+SIG*SIG+2.D0*SIG*COSDIR)
MMMDFC = (SIG+COSDIR)/MMM*SIGDFC MMMDFC = (SIG+COSDIR)/MMM*SIGDFC
MMMDFW = (SIG+COSDIR)/MMM*SIGDFW MMMDFW = (SIG+COSDIR)/MMM*SIGDFW
!=====C !=====C
! 3 C CALCUL DE J ET DE SES DERIVEES (COMMUN AUX 2 MODELES) ! 3 C CALCULATION OF J AND ITS DERIVATIVES (COMMON TO BOTH MODELS)
!=====C=========================================================== !=====C=============================================================
COEFJ = UWBM(I)/(XKN*OMEGAA*DSQRT(2.D0)) COEFJ = UWBM(I)/(XKN*OMEGAA*DSQRT(2.D0))
JJJ = COEFJ*DSQRT(MMM*FW) JJJ = COEFJ*DSQRT(MMM*FW)
JJJDFC = 0.5D0*JJJ/MMM*MMMDFC JJJDFC = 0.5D0*JJJ/MMM*MMMDFC
JJJDFW = 0.5D0*JJJ*(1.D0/FW+1.D0/MMM*MMMDFW) JJJDFW = 0.5D0*JJJ*(1.D0/FW+1.D0/MMM*MMMDFW)
!=====C !=====C
! 4 C SELECTION DU MODELE EN FONCTION DE LA VALEUR DE J ! 4 C MODEL SELECTION BASED ON THE VALUE OF J
!=====C================================================== !=====C========================================
IF (JJJ.GT.3.47D0) THEN IF (JJJ.GT.3.47D0) THEN
MODEL=2 MODEL=2
ELSE ELSE
MODEL=1 MODEL=1
ENDIF ENDIF
!=====C !=====C
! 5 C CALCUL DE DELTAW ET DE SES DERIVEES (SELON LE MODELE CHOISI) ! 5 C CALCULATION OF DELTAW AND ITS DERIVATIVES (DEPENDING ON THE MODEL CHOSEN)
!=====C============================================================= !=====C==========================================================================
IF (MODEL.EQ.1) THEN IF (MODEL.EQ.1) THEN
COEFTA = XKN*R*DEUPI/2.D0*DSQRT(BETAMJ*0.5D0) COEFTA = XKN*R*DEUPI/2.D0*DSQRT(BETAMJ*0.5D0)
TAW = COEFTA*DSQRT(JJJ) TAW = COEFTA*DSQRT(JJJ)
...@@ -176,8 +176,8 @@ ...@@ -176,8 +176,8 @@
TAWDFW = COEFTA*JJJDFW TAWDFW = COEFTA*JJJDFW
ENDIF ENDIF
!=====C !=====C
! 6 C CALCUL DE KA ET DE SES DERIVEES (SELON LE MODELE CHOISI) ! 6 C CALCULATION OF KA AND ITS DERIVATIVES (DEPENDING ON THE MODEL CHOSEN)
!=====C============================================================= !=====C======================================================================
IF (MODEL.EQ.1) THEN IF (MODEL.EQ.1) THEN
COEFKA = XKAPPA/(BETAMJ*XKN) COEFKA = XKAPPA/(BETAMJ*XKN)
XKA = 30.D0*TAW*DEXP(-COEFKA*TAW*DSQRT(SIG/MMM)) XKA = 30.D0*TAW*DEXP(-COEFKA*TAW*DSQRT(SIG/MMM))
...@@ -194,8 +194,8 @@ ...@@ -194,8 +194,8 @@
& *DLOG(30.D0*TAW/XKN) + (1.D0-AUXI)*TAWDFW/TAW ) & *DLOG(30.D0*TAW/XKN) + (1.D0-AUXI)*TAWDFW/TAW )
ENDIF ENDIF
!=====C !=====C
! 7 C CALCUL DE F1 ET DE SES DERIVEES (SELON LE MODELE CHOISI) ! 7 C CALCULATION OF F1 AND ITS DERIVATIVES (DEPENDING ON THE MODEL CHOSEN)
!=====C============================================================= !=====C======================================================================
IF (MODEL.EQ.1) THEN IF (MODEL.EQ.1) THEN
F1MJ = FW -2.D0*BETAMJ*MMM/JJJ F1MJ = FW -2.D0*BETAMJ*MMM/JJJ
DF1DFC = -2.D0*BETAMJ*(MMMDFC/JJJ-JJJDFC*MMM/JJJ**2) DF1DFC = -2.D0*BETAMJ*(MMMDFC/JJJ-JJJDFC*MMM/JJJ**2)
...@@ -210,26 +210,26 @@ ...@@ -210,26 +210,26 @@
& - 2.D0*MMM/JJJ*JJJDFW/AUXI**3) & - 2.D0*MMM/JJJ*JJJDFW/AUXI**3)
ENDIF ENDIF
!=====C !=====C
! 8 C CALCUL DE F2 ET DE SES DERIVEES (COMMUN AUX 2 MODELES) ! 8 C CALCULATION OF F2 AND ITS DERIVATIVES (COMMON TO BOTH MODELS)
!=====C=========================================================== !=====C==============================================================
COEF2 = 30.D0*DEPTH(I)/DEXP(1.D0) COEF2 = 30.D0*DEPTH(I)/DEXP(1.D0)
AUXI = DLOG(COEF2/XKA) AUXI = DLOG(COEF2/XKA)
F2MJ = DSQRT(2.D0/FC) - AUXI/XKAPPA F2MJ = DSQRT(2.D0/FC) - AUXI/XKAPPA
DF2DFC = XKADFC/(XKA*XKAPPA)-1.D0/DSQRT(2.D0*FC**3) DF2DFC = XKADFC/(XKA*XKAPPA)-1.D0/DSQRT(2.D0*FC**3)
DF2DFW = XKADFW/(XKA*XKAPPA) DF2DFW = XKADFW/(XKA*XKAPPA)
!CJSUBR!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! !
!.......CALCUL DE L'ERREUR SUR LA FONCTION !.......CALCULATION OF THE ERROR ON THE FUNCTION
! """""""""""""""""""""""""""""""""" ! """"""""""""""""""""""""""""""""""""""""
ERRF=ABS(F1MJ)+ABS(F2MJ) ERRF=ABS(F1MJ)+ABS(F2MJ)
IF (ERRF.LT.TOLF) THEN IF (ERRF.LT.TOLF) THEN
KONVER=1 KONVER=1
GOTO 201 GOTO 201
ENDIF ENDIF
! !
!.......CALCUL DE DX !.......CALCULATION OF DX
! """""""""""" ! """""""""""""""""
DET=DF1DFC*DF2DFW-DF1DFW*DF2DFC DET=DF1DFC*DF2DFW-DF1DFW*DF2DFC
IF (ABS(DET).LT.1.D-10) THEN IF (ABS(DET).LT.1.D-10) THEN
WRITE(6,*) '/!/ ARRET DANS CJSUBR : DETERMINAT NUL DET=' WRITE(6,*) '/!/ ARRET DANS CJSUBR : DETERMINAT NUL DET='
...@@ -238,13 +238,13 @@ ...@@ -238,13 +238,13 @@
DFC=(-F1MJ*DF2DFW+F2MJ*DF1DFW)/DET DFC=(-F1MJ*DF2DFW+F2MJ*DF1DFW)/DET
DFW=(-F2MJ*DF1DFC+F1MJ*DF2DFC)/DET DFW=(-F2MJ*DF1DFC+F1MJ*DF2DFC)/DET
! !
!.......MISE A JOUR DE LA SOLUTION !.......UPDATING THE SOLUTION
! """""""""""""""""""""""""" ! """""""""""""""""""""
FC=FC+DFC FC=FC+DFC
FW=FW+DFW FW=FW+DFW
! !
!.......TEST SUR LA VALEUR DE DX !.......TEST ON THE VALUE OF DX
! """""""""""""""""""""""" ! """""""""""""""""""""""
ERRX=ABS(DFC)+ABS(DFW) ERRX=ABS(DFC)+ABS(DFW)
IF (ERRX.LT.TOLX) THEN IF (ERRX.LT.TOLX) THEN
KONVER=2 KONVER=2
...@@ -258,8 +258,8 @@ ...@@ -258,8 +258,8 @@
201 CONTINUE 201 CONTINUE
IF (LUMES.GT.0) WRITE(LUMES,2000) KONVER,ITER,FC,FW IF (LUMES.GT.0) WRITE(LUMES,2000) KONVER,ITER,FC,FW
2000 FORMAT( 2000 FORMAT(
& 'CONVERGENCE ',I1,' APRES',I5,' ITERATIONS => FC =', & 'CONVERGENCE ',I1,' AFTER ',I5,' ITERATIONS => FC =',
& E11.4,' ET FW =',E11.4) & E11.4,' AND FW =',E11.4)
ENDIF ENDIF
ENDDO ENDDO
ENDDO ENDDO
......
...@@ -76,11 +76,11 @@ ...@@ -76,11 +76,11 @@
& (ST3,'=','GRADF Y',IELM2,1.D0,MESH%Y, & (ST3,'=','GRADF Y',IELM2,1.D0,MESH%Y,
& ST1,ST1,ST1,ST1,ST1,MESH,.FALSE.,ST1,ASSPAR=.TRUE.) & ST1,ST1,ST1,ST1,ST1,MESH,.FALSE.,ST1,ASSPAR=.TRUE.)
!AQUI FAZEMOS A MÉDIA dos grads no volume. !HERE WE AVERAGE the grads in the volume.
CALL OV('X=Y/Z ',WIPDY,T1,T3,C,NPOIN2) CALL OV('X=Y/Z ',WIPDY,T1,T3,C,NPOIN2)
!AQUI TEMOS AS DERIVADAS EM X E Y DO WAVE INDUCED PRESSURE !HERE WE HAVE THE X AND Y DERIVATIVES OF THE WAVE INDUCED PRESSURE
RETURN RETURN
END END
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment